Inexact Newton Dogleg Methods Homer Walker Mathematical Sciences Department Worcester Polytechnic Institute August 8, 2003 Joint work with Roger Pawlowski (SNL), J. N. Shadid (SNL), J. P. Simonis (WPI). Nonlinear problem: F(x) = 0, $F: \mathbb{R}^n \to \mathbb{R}^n$. Start with classical . . . #### **Newton's Method:** Given an initial x. Iterate: Solve F'(x)s = -F(x). Update $x \leftarrow x + s$. #### **Globalizations**. **Idea:** Repeat as necessary . . . - *Test* a step for acceptable progress. - If unacceptable, *modify* it and test again. #### Major approaches: - Backtracking (linesearch, damping). - Trust region. ## Trust region globalization. • $s = \arg \min_{\|w\| \le \delta} \|F(u) + F'(u) w\|.$ • Can't be computed exactly. # The dogleg step. • $\Gamma^{\mathrm{DL}} \colon 0 \to s^{\mathrm{CP}} \to s^N$. • $s = \underset{\|w\| \leq \delta, w \in \Gamma^{\mathrm{DL}}}{\operatorname{arg \, min}} \|F(u) + F'(u) w\|.$ Work toward inexact Newton and Newton-Krylov adaptations. #### Straightforward: • $$||F(u) + F'(u) s^{IN}|| \le \eta ||F(u)||$$ • $\Gamma^{\mathrm{DL}} : 0 \to s^{\mathrm{CP}} \to s^{IN}$. #### **Inexact Newton Dogleg Method:** Given $\eta_{\max} \in [0,1)$, $\delta_{\min} > 0$, $t \in (0,1)$, $0 < \theta_{\min} < \theta_{\max} < 1$, and initial u and $\delta \geq \delta_{\min}$. Iterate: Choose $\eta \in [0, \eta_{ ext{max}}]$ and s^{IN} such that $$||F(u) + F'(u) s^{IN}|| \le \eta ||F(u)||.$$ Determine $s \in \Gamma^{DL}$. While $ared < t \cdot pred$ do: Choose $\theta \in [\theta_{\min}, \theta_{\max}]$. Update $\delta \leftarrow \max\{\theta \delta, \delta_{\min}\}.$ Redetermine $s \in \Gamma^{DL}$. Update $u \leftarrow u + s$ and update δ . - $ared \equiv ||F(u)|| ||F(u+s)||$, $pred \equiv ||F(u)|| ||F(u) + F'(u)s||$. - Choose θ , update δ a la Dennis-Schnabel. - Determine $s \in \Gamma^{\mathrm{DL}}$ so that $||s|| \geq \min\{||s^{IN}||, \delta_{\min}\}.$ Recall: u is a stationary point of $||F|| \iff ||F(u)|| \le ||F(u) + F'(u)s|| \ \forall s$. **Theorem:** Assume F is continuously differentiable. If u_* is a limit point of $\{u_k\}$, then u_* is a stationary point of $\|F\|$. If additionally $F'(u_*)$ is nonsingular, then $F(u_*) = 0$ and $u_k \to u_*$; furthermore, $s_k = s_k^{IN}$ is acceptable for all sufficiently large k. Proof: Since $||F(u_k) + F'(u_k) s_k^{IN}|| \le \eta_{\max} ||F(u_k)||$ and $||s_k|| \ge \min\{||s_k^{IN}||, \delta_{\min}\}$, one can show: If u_* is either a non-stationary point or such that $F'(u_*)$ is nonsingular, then there is an $\bar{\eta} < 1$ such that $$||F(u_k) + F'(u_k) s_k|| \le \bar{\eta} ||F(u_k)||$$ for u_k near u_* . The theorem follows from Eisenstat-W (1994), Cor. 3.6. #### Possible big problem: Evaluating s^{CP} requires F'^T -products. - > Analytic evaluation may be expensive, infeasible. - ▶ Finite-difference approximation won't work. - ▶ Automatic differentiation? - ▶ Brown–Saad (1990): dogleg-within-the-Krylov-subspace using (unrestarted) GMRES. - ightharpoonup Not a problem when $F'=F'^T$. Minor consideration: For <u>any</u> $\eta \in [0, \eta_{\max})$, $\|F(u) + F'(u)s\|$ may not decrease monotonically along Γ^{DL} . More serious consideration: Unless $\eta \in [0, \eta_{\max})$ is small (how small?), we may have $\langle s^{IN}, s^{\text{CP}} \rangle < \|s^{\text{CP}}\|^2$ or $\|s^{IN}\| < \|s^{\text{CP}}\|$. #### How to choose $s \in \Gamma^{\mathrm{DL}}$? #### The Standard Strategy. $$\begin{split} &\text{If } \|s^{IN}\| \leq \delta, \\ &s = s^{IN} \\ &\text{Else if } \|s^{\text{CP}}\| \geq \delta, \\ &s = (\delta/\|s^{\text{CP}}\|)s^{\text{CP}} \\ &\text{Else} \\ &s = (1-\gamma)s^{\text{CP}} + \gamma s^{IN} \\ &\text{for } \gamma \in (0,1) \text{ such that } \|s\| = \delta \end{split}$$ - $s \in \Gamma^{DL}$ is uniquely determined. - s^{IN} is always computed; s^{CP} may not be. - ullet If η isn't small, we may have $s=s^{IN}$ when $s=\lambda s^{\mathrm{CP}}$ would be preferred. #### An Alternative Strategy. $$\begin{split} &\text{If } \|s^{\text{CP}}\| \geq \delta, \\ &s = (\delta/\|s^{\text{CP}}\|)s^{\text{CP}} \\ &\text{Else if } \|F(u) + F'(u)\,s^{\text{CP}}\| \leq \eta \|F(u)\|, \\ &s = s^{\text{CP}} \\ &\text{Else if } \|s^{IN}\| \leq \delta, \\ &s = s^{IN} \\ &\text{Else} \\ &s = (1-\gamma)s^{\text{CP}} + \gamma s^{IN} \\ &\text{for } \gamma \in (0,1) \text{ such that } \|s\| = \delta \end{split}$$ - $s \in \Gamma^{DL}$ is uniquely determined. - s^{CP} is always computed; s^{IN} may not be. - s is appropriately biased toward s^{CP} . #### **Further refinements.** • If needed, s^{IN} can be computed as $s^{IN}=s^{\mathrm{CP}}+z$, where $\|r^{\mathrm{CP}}+F'(u)z\|\leq \eta\|F(u)\|$ and $r^{\mathrm{CP}}\equiv F(u)+F'(u)\,s^{\mathrm{CP}}$. • Having both s^{CP} and s^{IN} , we can choose $s=(1-\gamma)s^{\text{CP}}+\gamma s^{IN}$ so that $\|s\|\leq \delta$ and $\|F(u)+F'(u)s\|$ is minimal (easy). #### Numerical experiments. Extremely preliminary!! - ▶ IBM Linux cluster, 4 nodes (8 CPUs). - ▶ MPSalsa + NOX. - No row-sum scaling (yet). - \triangleright Alternative strategy computes $s^{IN}=s^{\rm CP}+z$, does not minimize $\|F(u)+F'(u)\,s\|.$ #### 2D Thermal Convection Problem. Run times in seconds. | | Backtracking | Dogleg | | |-----------------|--------------|--------|------| | Ra | (Quad.) | Std. | Alt. | | 10 ³ | 57 | 56 | 56 | | 10 ⁴ | 111 | 94 | 93 | | 10 ⁵ | 146 | 147 | 98 | | 10 ⁶ | 409 | 1003 | 265 | | Geo.
Means | 139 | 167 | 108 | Adaptive (Choice 1) Forcing Terms | | Dogleg | | | |-----------------|--------|------|--| | Ra | Std. | Alt. | | | 10 ³ | 83 | 82 | | | 10 ⁴ | 121 | 126 | | | 10 ⁵ | 293 | 262 | | | 10 ⁶ | 1266 | 1171 | | | Geo.
Means | 247 | 237 | | Constant (10^{-4}) Forcing Terms # **2D Backward Facing Step Problem**. Run times in seconds. | | Dogleg | | | |----------------|--------|------|--| | Re | Std. | Alt. | | | 100 | 20 | 23 | | | 200 | 48 | 36 | | | 300 | 163 | 30 | | | 400 | 210 | 35 | | | 500 | F | 63 | | | 600 | F | 137 | | | 700 | F | F | | | 750 | F | F | | | 800 | F | F | | | Geo.
Means* | 95 | 28 | | | Adaptive | (Choice | 1) | Forcing | Terms | |----------|---------|----|---------|-------| |----------|---------|----|---------|-------| | | Dogleg | | | |-----------------|--------|------|--| | Re | Std. | Alt. | | | 100 | 22 | 22 | | | 200 | 42 | 42 | | | 300 | 94 | 100 | | | 400 | F | F | | | 500 | 63 | 63 | | | 600 | 109 | 71 | | | 700 | 125 | 133 | | | 750 | 136 | 142 | | | 800 | 268 | 146 | | | Geo.
Means** | 247 | 237 | | Constant (10^{-4}) Forcing Terms $^{^*100 \}le Re \le 400$ $^{**}Re \neq 400$ ### **Conclusions**. - None yet! Except ... - These dogleg methods can solve nontrivial problems. - Methods, strategies, and refinements bear further study.